IMM Method Using Kalman Filter with Fuzzy Gain
نویسندگان
چکیده
منابع مشابه
IMM Method Using Tracking Filter with Fuzzy Gain
In this paper, we propose an interacting multiple model (IMM) method using intelligent tracking filter with fuzzy gain to reduce tracking error for maneuvering target. In the proposed filter, the unknown acceleration input for each sub-model is determined by mismatches between the modelled target dynamics and the actual target dynamics. After an acceleration input is detected, the state estimat...
متن کاملDoppler and bearing tracking using fuzzy adaptive unscented Kalman filter
The topic of Doppler and Bearing Tracking (DBT) problem is to achieve a target trajectory using the Doppler and Bearing measurements. The difficulty of DBT problem comes from the nonlinearity terms exposed in the measurement equations. Several techniques were studied to deal with this topic, such as the unscented Kalman filter. Nevertheless, the performance of the filter depends directly on the...
متن کاملFuzzy Optimization Using Extended Kalman Filter
Abstract : Fuzzy Logic is based on the idea that in fuzzy sets each element in the set can assume a value from 0 to 1, not only 0 or 1, as in crisp set theory. The degree of membership function is defined as the gradation in the extent to which an element is belonging to the relevant sets. Optimizing the membership functions of a fuzzy system can be viewed as a system identification problem for...
متن کاملFuzzy Adaptive Extended Kalman Filter
Kalman filtering is a method for estimating state variables of a dynamic systems recursively from noise-contaminated measurements. For systems with nonlinear dynamics, a natural extension of the Linear Kalman Filter (LKF), called Extended Kalman filter (EKF) is used. The Kalman filter represents one of the most popular estimation techniques for integrating signals from navigation systems, like ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Korean Institute of Intelligent Systems
سال: 2006
ISSN: 1976-9172
DOI: 10.5391/jkiis.2006.16.2.234